
Jianlin Ye*, Stelios Ioannou*†, Panagiota Nikolaou*, Marios Raspopoulos*†
*University of Central Lancashire, Pyla, Larnaca, Cyprus

†INterdisciplinary Science Promotion & Innovative Research Exploration (INSPIRE)
jye9@uclan.ac.uk, sioannou2@uclan.ac.uk, pnikolaou1@uclan.ac.uk, mraspopoulos@uclan.ac.uk

A CNN based Real-time Forest Fire
Detection System for Low-power

Embedded Devices

mailto:jye9@uclan.ac.uk
mailto:sioannou2@uclan.ac.uk
mailto:pnikolaou1@uclan.ac.uk

Overview

Introduction 2

We tried to deploy the SoTA target detection algorithm on a low computing
power embedded device (Raspberry Pi 4B) to detect forest fires in real
time for small UAV applications:

 We tried to modify the original YOLOv5 backbone to a lightweight
network, and restructured the whole network based on the new
backbone.

 We performed a channel pruning operation on the modified YOLO
network to make the network further compact and the network
structure more simplified.

 We overclocked the CPU of Raspberry Pi 4B at the hardware level
and investigated the effect of hardware acceleration on detection frame
rate.

 Experimental results show that the proposed YOLOv5 has a higher
accuracy rate (mAP@0.5) than the original YOLOv5 on the same test
set, and that the detection frame rate(FPS) has been significantly
improved(1.16 FPS to 8.57 FPS).

Comparison of Single Board Computers (SBCs)

Introduction 3

After carried out a research, the mainstream single board
computer/embedded platform for deploying deep learning algorithms are
Raspberry Pi and Nvidia Jetson series.

https://www.singular.com.cy/raspberry-pi-4-
model-b-single-board-computer-broadcom-
bcm2711-1.5-ghz-ram-8gb.html?sl=el

https://developer.nvidia.com/embedded/jetson-
nano-developer-kit

Benchmarks

Introduction 4

Is the Jetson nano always the better choice?

Introduction 5

NVIDIA’s Jetson series
is seen as a deployment
accelerator for machine
deployment. Some deep
training applications of
Jetson Nano developers
are better evaluated
than Raspberry Pi kit. [1]

Raspberry Pi 4B is 88 x
58 x 19.5mm and 46g

NVidia Jetson nano is 164
x 107 x 42mm and 241g

Relative Works

Background and Related Works 6

Wahyutama et al. implemented Yolov4
in Raspberry Pi and is performed at
approximately 2 FPS in an actual
operation scenario, resulting in an
accuracy of 97–99%. Published: 21 April
2022
Electronics 2022, 11, 1323.
https://doi.org/10.3390/electronics11091323

Gao et al. implemented Yolov5 in Raspberry
Pi and the inference speed is approximately
0.5 FPS for the improved beehive detect
and tracking system. Published: 27 October
2022

Journal of Biosystems Engineering
https://doi.org/10.1007/s42853-022-00166-6

Proposed optimization Framework

Proposed Optimization 7

Dashed lines denote the iterative process.

Network Architecture

Proposed Optimization 8

The architecture of the proposed network. 1) The input is a 320 × 320 three-channel
RGB image. 2) The backbone of the proposed network is ShuffleNetV2, which can
reduces the amount of cache space occupied and increases the inference speed. 3)
The Neck network part uses a FPN + PAN architecture, with channel pruning of the
Head in order to optimise memory access and usage.

Network Pruning

Proposed Optimization 9

We associate a scaling factor (reused from batch normalization layers) with each
channel in convolutional layers. Sparsity regularization is imposed on these
scaling factors during training to automatically identify unimportant channels.

The channels with small scaling factor values (in orange color) will be pruned (left
side). After pruning, we obtain compact models (right side), which are then fine-
tuned to achieve comparable (or even higher) accuracy as normally trained full
network.

Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE
international conference on computer vision. 2017.

Sparse training and pruning preparation

Proposed Optimization 10

• It uses the scaling factors of the BN layer and associates the scaling factors with
each channel in the convolutional layer.

• A sparse regularization is applied to these scale factors during training so that the
unimportant scale factor is approximated to zero, thus automatically identifying the
unimportant channels.

• By pruning the orange channels with a scale factor close to 0, we can obtain the
compact network, which is the channel with a larger scale factor.

Normal training Distribution after sparsity training

Pruning process and Fine-tuning of the pruned model

Proposed Optimization 11

• After obtaining the sparse trained model, the next step is to prune out the channels
with γ going to 0. This method is based on the structured pruning of the channels,
and the accuracy of the pruning will generally be reduced. We can fine-tune the
finetune of the compact network to improve its accuracy, so that it is comparable to
the normal training network, or even more accurate.

• The reduction in the accuracy after pruning can be fine-tuned to recover. When
the pruned model is able to relearn the neural network parameters based on the
current network structure, it is the fine-tuned for training and this restores the
detection accuracy of the model and improves the mapping effect.

Hardware Acceleration

• In order to get the best performance out of the algorithms, the RPi4B
CPU was overclocked to 2.0 GHz (maximum of 2140 MHz).

• As the RPi is normally used with a CPU with its NEON-ARM
instructions, the GPU was not overclocked for this study and its
default frequency, 500 MHz was used (maximum of 650 MHz).

• To avoid overheating of the RPi platform, automatic over-voltage
adjustment and dynamic clock frequency were used.

Proposed Optimization 12

Dataset

The dataset was
randomly divided
into three
independent and
equally distributed
sets:

(i) the Training set,
containing 83% of
the images (20,255);

(ii) the Validation set,
containing 13% of
the images (3,148);

(iii) the Test set,
containing 4% of the
images (977).

Dataset Generation and Training Procedure 13

Some examples of the dataset: (a) and (b) show image-based data augmentation
techniques to expand the dataset. (c) and (d) show respective ground-truth bounding
boxes. (e) and (f) represent images that are prone to false detection. (g) is a ground-
based image of the forest fire and (h) is an aerial view of the fire.

Comparison of models‘ performances on Prediction

Evaluation and Experimental Results 14

The optimised YOLOv5 outperforms the original YOLOv5 across most of the
evaluation metrics.

However, the location of objects detected by the original YOLOv5 network is on
average more accurate in terms of IoU experimental values. This is because
the original YOLOv5 retains more convolutional layers than the optimised
network

Analysis of the model pruning results

Evaluation and Experimental Results 15

Parameter comparison of the proposed detection models for different
channel pruning rates are tabulated on Tab. II, According to Tab. II, all 4-
evaluation metrics were reduced for different channel pruning rates. After
performing fine-tuning training, the mAP recovered to 84.87%, 92.5%,
92.65% and 93.41% respectively.

Fine-tuning revealed that the channel pruning rate of 70% achieved the best
balance between accuracy and inference speed, which resulted in a better
model compression with less loss of average accuracy.

Network Structure Comparison

Evaluation and Experimental Results 16

The pruning rules refer to the design guidelines of ShuffleNet v2.

Original Yolov5 Head Optimized Yolov5 Head

Overclocking Performance Comparison

Evaluation and Experimental Results 17

Performance of the Raspberry Pi 4B at Different Overclocked Frequencies

Detection results from the Comparison Experiment

Evaluation and Experimental Results 18

The detection results show that the proposed YOLOv5 can mark out more areas
where flames and smoke are present in the pictures and there are no false
detections in pictures with flame-like objects.

Detection Results on Raspberry Pi Platform

Evaluation and Experimental Results 19

Evaluation on the Raspberry Pi platform: the detection result of the image
obtained in real time from the web camera, with the live detection frame rate
in the top left corner of the detection screen.

Video input Results for testing the model performance

Evaluation and Experimental Results 20

A video of the California
fires [2] was obtained
from the internet and the
results of flame and
smoke detection using
the optimized model
show that the model can
still detect the location of
the flames even in a
smoke-filled scene and
mark the location of the
flames when the camera
is zoomed out.

Conclusion

The optimized YOLOv5 produced the highest mAP of
92.5% compared to the ordinary YOLOv5s model and could
detect at 7-9 FPS on the RPi-4B.
The optimized model use 35% less CPU usage than the

original YOLOv5.
The reduced CPU usage also translated to 25% reduction

in CPU temperature.
The deployment approach in this study reduces the

difficulty of deploying the deep-learning fire detection
model on edge devices.

Conclusion 21

Questions

Conclusion

Reference

Reference

1. P. Howard, “The Cost of Carbon Project - Flammable Planet: Wildfires and the
Social Cost of Carbon”, Institute of Policy Integrity, NY University, School of Law,
2014.

2. https://medium.com/@anil.ozenn/jetson-nano-vs-raspberry-pi%CC%87-4-
b1f6fbf5a00e

3. https://www.youtube.com/watch?v=0k7ipkU6gHw&ab_channel=CBS8SanDiego

Replacement of the Backbone Network

• Computational complexity and parameter storage
have a negative impact on the speed of CNN networks
which can be extremely slow when running on
computational- and power constrained devices.

• The current state-of-the-art lightweight network
ShuffleNetV2 is an improved version based on
ShuffleNet. ShuffleNetV2 is faster and more accurate
than most other networks for the same complexity of
inference. Hence, it is ideal for replacing the ordinary
YOLOv5 backbone network.

Backup slides 24

The selection process of the Backbone

Backup slides 25

This blog documents the process of deploying the target detection algorithm to an embedded device (jetson
nano) and some modification strategies to lighten and improve the accuracy of the YOLOv4 algorithm.

https://blog.csdn.net/hexiao260/article/details/124915149

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design https://arxiv.org/abs/1807.11164

We try to replace the backbone feature extraction network with the lighter
ShuffleNetV2 network to achieve a lightweight network model that balances speed and
accuracy.

YOLOv5 Algorithm

Backup slides 26

As the current state-of-
the-art deep learning
target detection
algorithm, YOLOv5, has
gathered a large number
of tricks, but there is still
room for improvement
and enhancement, and
different improvement
methods can be used for
the detection difficulties
of specific application
scenarios.
The next section will focus
on how we made
improvements to YOLOv5
in detail.

https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-
detection-algorithm-for-custom-object-detection-an-example-use-case/

Change the backbone (1/2)

Backup slides 27

First step is to modify common.py and add
the ShuffleNetV2 module.

Change the backbone (2/2)

Backup slides 28

If m in [Conv,MobileNetV3_InvertedResidual,ShuffleNetV2_InvertedResidual]

Step 3: Modify the yaml file

Step 2: Register the module ShuffleNetV2 in yolo.py.

Deployment on Raspberry Pi Platform

Backup slides 29

• To achieve running deep learning algorithms on Raspberry Pi in real time, we transform
the PyTorch model obtained after the training of the improved Yolov5 algorithm into the
ONNX cross-frame model intermediate expression model.

• The quantized model is then run in the onnxruntime framework for testing the
performance of the fire detection algorithm.

• After completing the evaluation, the onnxruntime framework and the completed
quantization model are deployed to the Raspberry Pi 4B to run the fire detection
algorithm.

	Slide Number 1
	Overview
	Comparison of Single Board Computers (SBCs)
	Benchmarks
	Is the Jetson nano always the better choice?
	Relative Works
	Proposed optimization Framework
	Network Architecture
	Network Pruning
	Sparse training and pruning preparation
	Pruning process and Fine-tuning of the pruned model
	Hardware Acceleration
	Dataset
	Comparison of models‘ performances on Prediction
	Analysis of the model pruning results
	Network Structure Comparison
	Overclocking Performance Comparison
	Detection results from the Comparison Experiment
	Detection Results on Raspberry Pi Platform
	Video input Results for testing the model performance
	Conclusion
	Questions
	Reference
	Replacement of the Backbone Network
	The selection process of the Backbone
	YOLOv5 Algorithm
	Change the backbone (1/2)
	Change the backbone (2/2)
	Deployment on Raspberry Pi Platform

